
DRAFT
Draft: Proximum ᚼ

Chris Walker
chris@ckwalker.com

Abstract

Proximum aims to augment physics with trustless computation. It is the first blockchain with a consensus
mechanism and fractal network structure mapped onto spacetime to maximize scale and decentralization.
It relies on the speed of light for a new trustless proof of proximity, uses zero-knowledge proofs to compress
computation at each network scale, and enables new location-dependent blockchain applications such as
truly local flatcoins.

Disclaimer: This is an incomplete draft document. We welcome comments, critiques, and improvements.
Nothing in this document is a promise or guarantee of any kind. Sometimes a paper is just a paper.
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1 Introduction
Blockchains are best modeled as virtual physics: they
aim to augment base physics with additional func-
tions corresponding to universal physical laws and
additional data corresponding to local physical struc-
tures, where all participants can reach consensus on
the state transitions of relevant structures through
successive application of the laws. Any application
which does not need these properties does not need
a blockchain. When one imagines a network which
perfectly meets traditional blockchain goals of decen-
tralization, security, speed, and scalability, it approx-
imates a physical principle: universal, immutable,
and perfectly parallel. But there is plenty of room
to improve the fidelity with which blockchains aug-
ment physics.

Decentralization and Security
In general, Proof of Stake blockchains backed by eco-
nomic incentives offer security bounded by the value
at risk and are subject to the wealth-centralizing ef-
fects of staking rewards. Many networks (e.g. dele-
gated proof of stake systems) rely on small sets of par-
ticipants to determine consensus and are thus better
modeled as central planning committees rather than
physical principles–we will not consider them further.
Proof of Work blockchains reduce this wealth con-
centration effect because miners must pay for the re-
source expended during mining, but this ongoing cost
of security is unlikely to be sustainable in the absense
of inflationary mining rewards[28]. Many mining sys-
tems which require significant resource consumption
are subject to the centralization caused by economies
of scale and are subject to potential coercion from
local authorities.
Let us imagine an ideal solution: it would be teth-

ered to physical rather than economic principles, just
like extant Proof of Work systems, but it would re-
quire a small ongoing cost rather than a large one
(as an analogy, defending a city with a wall is more
cost-effective in the long run than maintaining a large
standing army). In addition, it would be extremely
decentralized to minimize the risk from coercive ju-
risdictions.

Latency and Scale
Current blockchains have a high minimum latency
because they must reach consensus globally. In
addition, they have a low minimum scale because
their consensus algorithms and incentive models are
not suitable for distant participants, e.g. Martian
colonies.

An ideal network would be able to achieve both
extremely low latencies through locally defined con-
sensus and extremely high scale such as the solar sys-
tem.

Economics
The primary reason to augment physics with
blockchain is to construct new economic systems.
The past decade has shown that Bitcoin’s use as a
store of value and tokenized representations of the
US Dollar, such as USDC and USDT, used are the
most important specific uses for blockchains. But
blockchains have yet to construct a widely accepted
asset which serves as store of value, unit of account,
and medium of exchange. While tokenized dollars
are more functional than legacy dollars, they by def-
inition cannot free us from the ills of the fiat cur-
rency regime. Because Bitcoin has a perfectly inelas-
tic supply curve and the demand for money varies sig-
nificantly over time as economic conditions change,
Bitcoin can never reach a stable price. An ideal
cryptoeconomic system would support the creation of
*many* flatcoins which maintain a stable price with
respect to themselves and a reference basket of prices,
and which can be cost-effectively used at the scale of
day-to-day commerce by regular people.

Physical analogies
We can look to the natural world for suggestions on
how to build a network that better achieves these
goals.

Universality Filling near-Earth spacetime with a
dense fabric of independent nodes is a useful ap-
proximation of a universal law. In blockchain
terms, consensus may be defined as the assent
of a majority of occupied spacetime, forming a
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less-centralized and more cost-effective proof of
work than existing blockchains.

Local Parallelism and Fractal Structure
Physics appears to scale through local compu-
tation and speed limits on causal propagation.
Blockchains can scale through parallelism, i.e.
defining local regions with bounded information
propagation between regions enabling parallel
computation.

Fractal Structure Natural phenomena often use
fractal structures to maximize throughput, such
as the branching of trees (maximizing absorbed
sunlight per trunk area) or the structure of
lungs (diffusion per volume)[20]. Arranging local
blockchain regions in a fractal structure mapped
directly to spacetime is an intuitive way to max-
imize throughput and minimize latency.

Proximum is motivated by these intutions, but one
can evaluate the network without accepting them.

2 Foundations
The Proximum network consists of a set of nodes
n ∈ Nodes participating in the Proximum proto-
col. Each node n holds a unique keypair Kn =
(Knpublic ,Knprivate) and is represented by a unique ad-
dress An which can be derived from each public key
An = f(Kpublic).
The network comprises a set of subnets, each of

which includes a public registry mapping an address
for each node within the subnet to the corresponding
public key and an asserted location r in R3:

An 7→ {Knpublic , rn}.

Each block of transactions created within subnet
N i

I1
is compressed into a single transaction which is

verified by the parent subnet N i−1
I2

.
Furthermore, Proximum depends on the following

principles and assumptions: see the Appendix for dis-
cussion of each.

Byzantine fault tolerance

The network is Byzantine-fault-tolerant: given 2m+1
honest nodes following the protocol correctly, these
nodes can use an algorithm to reach consensus on
the true network state despite up to m adversarial
or faulty nodes. Third party users interacting with
Proximum do not need to participate in the protocol
directly: to verify the state of Proximum, a third
party user u must trust only one honest node n.

One-way hash functions

A unique fingerprint or hash h can be created for any
message m: h = H(m).

Verifiable delay function (VDF)

A hash function H recursed n times can be used to
verify a minimum delay between two events x and y
based on the time τ required to compute each hash.
This hash function can be used as an approximate
clock: (y, π) = VDFn

Eval(x) = Hn(x). Also note that
additional data can be interleaved into this hash func-
tion.

Digital signatures

A node n holding a known keypair K can attest to
a message x by adding an unforgeable signature S to
create the signed messageMSn(x) that can be verified
by any observer.

Zero-knowledge proofs

A prover P can generate a proof Π of an underlying
computation C which can be checked by a verifier
V . Zero-knowledge proofs enable computation per-
formed by one party to be verified by another party
without revealing any further information about that
computation.

Spatial indexing

Earth’s surface may be tiled into roughly hexagonal
cells using the H3 index at a variety of resolutions,
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where In denotes the label for a specific cell at reso-
lution n. Statistics for these cells are shown in Table
2.

Speed of light

Information cannot be transmitted faster than the
speed of light.

Extended Kalman Filters

The Extended Kalman Filter (EKF) is a standard
method for estimating the state of a system with a
nonlinear state transition function and non-Gaussian
noise. In Proximum, it is used to estimate the posi-
tion r̂n of each node n based on its asserted location
rn and measurements consisting of trustless time of
flight of messages between nodes.
This estimated node position is used within Proxi-

mum to determine the assent of the majority of space-
time and can be relied upon by third parties to esti-
mate the position of users interacting with the Prox-
imum network.

3 Proximity
Proximum nodes can verify mutual proximity in a
trustless manner. Unlike traditional time-of-flight
calculations [26], nodes cannot rely on each other to
honestly report locations or event timing. A sim-
ple proof of proximity or PoP algorithm, denoted
d̄(n1, n2), allows any node n1 to bound the spatial
distance to any counterparty.

Two-way proximity
Node nA running a VDF beginning with the value
VDFEval(x0) at t0 can verify proximity to a counter-
party nB using these steps, as illustrated in Figure
3.

1. Node A signs a messagem1 = MSA
(yi) including

the most recent VDF output yi using keypair
KA and folds this message into its own VDF:
yi+1 = H(yi,m1).

2. Node A transmits this signed message m1 to
node B.

3. Node B receives the message and adds its signa-
ture: m2 = MSB

(m1).

4. Node B transmits this signed message m2 back
to node A.

5. Node A receives the message prior to the next
VDF output yk and folds m2 into the VDF: yk =
H(yk−1,m2).

Node nA can then bound the distance dnA,nB
to

node nB using the following inequality:

dnA,nB
< d̄(nA, nB) =

cτ(k − i)

2

where cτ represents the distance light travels per
VDF iteration, and k − i represents the number of
VDF iterations between finding yi and finding yk.
Note that node nB does not need to run the VDF to
participate in this proof, and thus can be replaced by
any user interacting with Proximum.

Node nA does not need to extend any trust to
its counterparty because m2 includes the pseudo-
random value yi and node nA’s signature. There-
fore it cannot have been generated in advance by nB .
Obviously node nB can follow similar steps to verify
proximity to nA. This forms the basis of Proximum’s
trustless proof of proximity.
While node A can trustlessly prove the proximity of

B, third parties cannot directly rely on m1,m2, . . . as
a trustless proof because A and B may have colluded
by signing messages containing stale VDF values to
understate their distance, etc.

N-way position estimation
Let N be the set of Proximum nodes, I be a spatial
region defined by location rI and threshold distance
δ, Nr ⊆ N be the nodes actually within this region,
and let N ′

r ⊆ N be the nodes claiming to occupy this
region. How can any observer accurately estimate
which nodes, N̂r ⊆ N , are actually within this region?
Consider the following brute force solution.

4



DRAFT
t

d
A dnA,nB d̄(nA, nB)

m1

m2

latency

tyi

tyi+1

ty...

tyk−1

tyk

Figure 1: Node B can trustlessly demonstrate prox-
imity to node A. The true distance dnA,nB

must be
less than d̄(nA, nB) due to latency and message prop-
agation speed. Note that the dotted diagonal lines
illustrate sections of Minkowski lightcones for A and
B.

1. Every node in N asserts a position r′ and a res-
olution l′n describing the region it claims to oc-
cupy.

2. Each node completes a two-way proximity proof
with every other node in N and signs its proof.
Yes, this is an O(n2) solution, bear with us.

3. One solver computes a position estimate r̂ for
every node using an Extended Kalman Filter
(EKF) based on these proximity proofs and as-
serted positions r′. Note that an EKF also pro-
vides a measure of uncertainty for each position
estimate.

4. The solver removes nodes with a probability be-
low δ of being located within their asserted re-
gion, P (|r̂ − r′| < ln

2 ) < δ, and those which
signed unreasonable proofs of proximity, to find
the consensus set N̂ .

5. A zero-knowledge proof of consensus set mem-
bership is created by the solver and broadcast to
network participants (remember, this is a brute
force solution)

Now any node or observer can trustlessly verify
that a majority of nodes within a region have reached
consensus on a state transition. In practice, we can
make several simplifying changes: the EKF can up-
date position estimates based on any number of two-
way proofs of proximity rather than requiring all
nodes to participate, seperate EKFs can be run per
subnet to minimize the size of the node states within
each EKF, and each EKF solution can be compressed
into a zero-knowledge proof only when specific confi-
dence intervals have been reached on node positions.

We also must consider the fact that the VDF val-
ues will drift slightly between participants, and that
nodes should not be able to sybil attack the proximity
results. Consider the revised algorithm below.

1. Node n reaches a qualifying VDF output yi, e.g.
where the i mod πblock = 0 or yi < πblock for
some parameter πblock.

2. Node n completes a two-way proximity proof
with pseudo-randomly selected nodes in other
regions.

3. State proofs are found and broadcast to the net-
work

This n-way position estimation algorithm forms the
basis of Proximum’s consensus mechanism.

Latency
The resolution of proximity proofs are limited by the
latency of typical computers: light travels 9,000,000
meters during a reasonable 30 ms response time, so
time of flight proximity proofs will provide little value
on regular networks[29]. Purpose-built systems can
achieve much lower latencies, however: at a 10 mi-
crosecond latency, light only travels 3,000 meters,
providing sufficient time of flight resolution for a wide
variety of applications, and sub-microsecond latencies
are certainly possible[29].
Because the time per hash τ is set to τ = 5×10−7 or

0.5µs/hash for Solana[25], network latency is likely to
be the limiting factor in all practical proximity proofs
rather than V DF resolution.
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Existing network limits
Proximum’s peer to peer PoP measurement does not
map well to most existing physical network infras-
tructure.
Two physically proximate nodes may communicate

through a distant hub, making PoP difficult due to
the increased time of flight between the hub and the
spokes, in addition to generally impractical tradi-
tional network latencies.[29] Rather than an obstacle,
this may be a significant opportunity for Proximum.
Other networks such as Helium already enable

point-to-point radio communication channels[14]. A
similar approach can be used by Proximum nodes.
Additionally, the speed parameter c may be set to
an artificially lower value such as 100,000,000m

s and
gradually increased as the network matures to ac-
count for initial network inefficiencies. Finally, new
networks such as Starlink use a grid topology which
may be able to resolve some of these latency concerns
in addition to serving as future Proximum nodes[26].
Together, these forces serve as a gradual incentive
for Proximum nodes to adopt or create low-latency
decentralized mesh networks.

4 Structure
Proximum uses the H3 geospatial index and proof
of proximity to create a tree of subnets. A small
subset of these hierarchical H3 cells is illustrated in
Figure 4. In this section we assume that every H3
resolution is used, but in practice restricting nodes
to a subset of allowed H3 resolutions e.g. {0, 3, 7} is
likely to be more performant due to a reduced number
of proofs required to reach consensus and more secure
due to reaching a larger quorum of nodes in each
subnet. The exact choice will be determined based on
the result of the Security and Scalability simulation
below.

Subnet membership
The set of nodes within a subnet Nn is defined by
the set of nodes which can trustlessly verify their
proximity to the majority of other nodes within Nn

contained in H3 cell In with area-equivalent circle

diameter lIr through the n-way position estimation
algorithm above.

Figure 2: Selected H3 geospatial cells tiling the west-
ern United States at resolutions 0–3. Note the cell
hierarchy: each cell Ii is composed of 7 cells Ii+1,
but cell borders do not line up precisely.

Each subnet NIr is a validium to its parent subnet
NIr−1

. By validium, we mean that the computations
performed on the subnet are verified by the parent
subnet through a zero-knowledge proof, but the data
required for these computations is not stored by the
parent[6].

Once b transactions have been verified within a
subnet, they are “rolled up” into a single zero-
knowledge proof and submitted to the parent subnet
as a single transaction.
Network consensus is reached when the majority of

r0 subnets agree. The tree of subnets will be initially
sparsely populated at network genesis: after launch,
new subnets can either be created adjacent to an ex-
isting subnet or within an exsting subnet, preserving
connectivity of the tree and the feasibility of high
resolution proximity proofs between adjacent cells.

Nodes join a subnet NIr by signing a mesage in-
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cluding the subnet’s H3 cell Ir and submitting it to
the parent H3 cell Ir−1.

5 Consensus
Network consensus is reached when the majority of
r0 subnets agree on state, with voting power pro-
portional the the approximate volume of spacetime
swept by each node. Because all transactions on
higher resolution subnets are included in this state,
consensus at the network root implies consensus at
all higher resolutions.

6 Computation
Proximum aims to preserve a general model of com-
putation. Computation performed within a subnet
must be defined by functions which are:

• Representable using the LLVM’s intermediate
representation (IR)[19] or multi-level intermedi-
ate representation (MLIR)[18],

• Compiled to a sandboxed target such as the ex-
tended Berkeley Packet Filter (eBPF)[5, 33] or
WebAssembly (WASM)[31], and

• Provable by Proximum’s zero-knowledge proof
system.

This minimal set of restriction permits a broad va-
riety of use cases such as peer-to-peer electronic cash
transfers, trustless market-making, and machine-
learning computation.
Note that Proximum nodes do not differentiate be-

tween “free” read operations and “paid” write oper-
ations: all function calls incur a cost proportional to
their computational complexity.

7 State
The data upon which computation acts is represented
as mapping from account to arbitrary bytecode. Each
datum also includes several pieces of metadata: the
set of subnets which must verify state transitions, the

set of owners or accounts permitted to modify the
state, and a deposit of the native asset ᚼ.

address → (bytes, {In, Im, . . . }, {owners}, deposit)
Note that every datum within the state defines the

set of subnets which must verify state transitions.
This enables network users to select appropriate se-
curity parameters for each datum. The owners of the
datum are also defined: these are the accounts which
are permitted to modify the state.

State propagation
(Add a section on the propagation of state consensus
from local subnets to the entire network)

This deposit is debited by subnet nodes at a rate
proportional to the length of the bytecode and the
time elapsed since deposit. Once the balance reaches
zero, the account is deleted.

Examples
We can consider a few common examples: a smart
contract can be deployed by saving the contract’s
bytecode to a datum. The contract can be upgrade-
able if the list of owners includes the address of an-
other contract or user. An ERC20-like token could
be implemented as a single datum containing token
balances with a single owner: the implementation
logic of the contract which defines the state-transition
rules for the token’s datum, e.g. for token mints and
transfers.

State migration
There may be cases where a datum’s state is migrated
to a new set of subnets in order to adapt to chang-
ing circumstances. The Proximum implementation
should include a mechanism enabling this.

8 Economics
There are several economic considerations for Proxi-
mum. The native asset ᚼ is intended to be a money-
like stable unit of account which is created, used,
and burned within the Proximum network. Widely
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adopted networks successfully incentivize partici-
pants to perform the rewarded activity, e.g. Bitcoin’s
incentive model results in tremendous resources ex-
pended on SHA256 hashing[21]. Proximum incen-
tivizes nodes to build a global, low-latency, peer-to-
peer computational consensus network by rewarding
nodes proportionally to the quantity of spacetime
that they mine.
We discuss how each of the following economic pa-

rameters incentivizes this behavior in more detail be-
low.

Parameter Value
Initial reserve pinit = 100, 000, 000ᚼ
Mining rate pmining = 100, 000, 000 ᚼ

year
Bond pbonding = 100, 000ᚼ
Burn fraction* pburn = 0.05

State rent rate† pstate = 1e− 9 ᚼ
byte year subnet

Computation rate† pcomp = 1e− 9 ᚼ
flop subnet

Table 1: Economic Parameters. * denotes globally-
adjustable parameters. † denotes subnet-specific ad-
justable parameters.

These internal use cases for ᚼ are important be-
cause a good currency has “fallback” economic utility
other than moneyness[15].

Reserve

An initial supply pinit is reserved at genesis to support
network growth and initial node bonds.

Bonding

Nodes must bond a quantity of ᚼ to participate in
consensus: 0 ≤ bondn ≤ pbond where pbondmax =
100, 000ᚼ. Proximum is not a proof of stake net-
work: consensus voting power is not proportional to
the quantity of ᚼ bonded. Instead, bonded ᚼ pro-
vides economic incentive to follow Proximum algo-
rithms correctly. Nodes which fail to follow the con-
sensus algorithm may lose their entire bond.

Mining
To incentivize nodes to fill spacetime, they earn
newly minted ᚼ for participating in consensus. Min-
ing rewards are proportional to the spacetime volume
asserted by each node. The target mining parameter
pmining = 100, 000, 000 ᚼ per year. H3’s authalic ra-
dius of 6,371.0072 km and Earth’s approximate sur-
face area AEarth = 510, 065, 616km2[11] result in an
areal mining rate of 0.196 ᚼ per km2 per year. Note
that in practice the initial total mining rate will be
lower than pmining because most of Earth’s surface is
inhospitable to mining nodes.
Instead of computing the complex spacetime sur-

face swept by a mining node, e.g. by integrating
its Voronai cell over time, mining rewards are scaled
with the age of the bonded subnet assertion up to an
age parameter page = 1 year and divided between all
nodes within a single cell. The naive mining rate ᚼ′

n

for a node n in cell Irn at resolution r is thus:

ᚼ′
n = min

(
1,

age
page

)
pminingbondn
|nN |pbondmax

AIr
n

AEarth

(
ᚼ

year

)

where AIr
n
is the area of cell Irn and |nN | is the

number of nodes in cell I. Areas and average annual
mining rates are shown for typical H3 resolutions in
Table 2.
Note that if the Proximum network expands to lo-

cations beyond Earth, the mining rate pmining will
stay constant and therefore the mining rate per ex-
isting subnet will decrease.

Slashing
Nodes lose bonded ᚼ to adversarial nodes for mis-
behavior, such as attesting to an invalid transaction
or V DF output. Any node that submits a proof of
an invalid attestation by another node may claim the
entire bond of the other node.
Nodes which fail to follow the consensus algorithm

may lose their entire bond. This is a significant eco-
nomic incentive to follow the consensus algorithm
correctly.
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r |Ir| Ar (m2) lIr (m) ᚼ′

In
ᚼ

year
0 1.2× 102 4.3× 1012 2.3× 106 8.3× 105

1 8.4× 102 6.1× 1011 8.8× 105 1.2× 105

2 5.9× 103 8.7× 1010 3.3× 105 1.7× 104

3 4.1× 104 1.2× 1010 1.3× 105 2.4× 103

4 2.9× 105 1.8× 109 4.7× 104 3.5× 102

5 2.0× 106 2.5× 108 1.8× 104 5.0× 101

6 1.4× 107 3.6× 107 6.8× 103 7.1
7 9.9× 107 5.2× 106 2.6× 103 1.0

Table 2: Statistics for H3 cells Ir at resolution r,
including cell count |Ir|, cell area Ar, area-equivalent
circle diameter lIr , and maximum mining rate rm

State rent

Proximum users must pay an ongoing cost to main-
tain state on-chain. This parameter pstate is intended
to prevent long-term state bloat. If a state balance
drops to zero, the nodes within that subnet may
delete the state and withdraw the state rent. This
dynamic parameter may be adjusted per subnet as
storage costs and network usage patterns change.

Computation

Proximum users must pay a one-time cost per com-
putation. This dynamic parameter is adjusted per-
subnet based on network load.

Payments

Proximum users may transfer ᚼ to other users.

Burning

A fraction of all existing ᚼ paid to nodes is burned
rather than received by the node, specifically during
bond slashing, state deletion, and computation pay-
ments. This global parameter pburn is intended to
reduce long-term inflation and may be adjustable by
the network.

9 Security
We must consider typical blockchain security consid-
erations as well as new security considerations related
to physical locality.

Byzantine fault tolerance
A system is Byzantine fault tolerant if it has a solu-
tion to the Byzantine Generals Problem[17], which
considers a distributed system with one or more
nodes providing conflicting information. This can oc-
cur in blockchains due to faulty nodes or malicious
nodes attempting to subvert the network.

In general a system reaching consensus by passing
messages between nodes, 3m + 1 nodes can tolerate
at most m Byzantine nodes[17]. Most proof of stake
systems such as Ethereum and Solana are subject to
this constraint.

Bitcoin exceeds this 3m+1 threshold in practice be-
cause conflicting message sets can be independently
ordered by quality (the total quantity of hashing work
done on each message set[21]). The Bitcoin network
can tolerate Byzantine nodes with m hashpower as
long as > m honest nodes remain.

Does Proximum enable a similarly heightened level
of Byzantine fault tolerance? The answer is not im-
mediately clear. Conflicting sets of messages can be
sorted by the quantity of spacetime they represent
the and sum of bonds at risk, but both claims rely on
economic incentives rather than physical constraint.
An ideal proof of spacetime would be rivalrous such
that no two nodes could physically claim the same re-
gion of spacetime at the same time: in this case nodes
could always independently select the same message
set with more confidence. Pending further analysis,
we will assume that Proximum is subject to the same
3m+1 constraint as most other distributed systems.

Forks
Nodes which attest to contradictory forks forfeit their
entire bond on both forks. Any other node can sub-
mit each message to the alternate fork, and every fork
can verify messages to be attestations for other forks
within the same time period.
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Typical bond slashing algorithms have limited ef-

fectiveness due to long range attacks, where a node
bonds, withdraws, and then forks the network from a
state prior to withdrawal to avoid losing their bond.
Proximum avoids this concern due to a well defined
V DF clock which can be used to define a maximum
fork time shorter than the bond withdrawal time.

Double spends
A double spend occurs when a user submits two con-
tradictory transactions are both accepted by the net-
work (i.e. having one’s cake and eating it too).

Sybil attacks
A Sybil attack occurs when a single attacker falsely
claims a large number of identities in order to in-
fluence a system where voting power is dependent on
the number of identities[8]. In the case of Proximum,
voting power is proportional to the volume of space-
time swept by each node, so a Sybil attacker would
claim to be in many locations.

Multiple keys, single location

Can an adversarial node attempt to increase its vot-
ing power by creating multiple nodes within a sub-
net? Yes, in the naive case where membership within
a subnet is simply determined by completing a PoP
to that subnet: all of an attacker’s sybil copies will
be able to perform the same proof.
Therefore we must modify this naive requirement

to bound voting power in subnet Ni per child subnet
Ni+1 so that Sybil attacks result in at most 1/7 of the
voting power of the parent subnet Ni. This solution
could be continued to bound voting power in Ni per
child subnet Ni+2, restricting a sybil attacker to 1/49
of the voting power of the parent subnet Ni, and so
on.

Single key, multiple locations

The analysis above assumes that each node n pos-
seses a unique keypair Kn. In practice, a sybil at-
tacker may share a key across multiple physical lo-
cations, but this is less of a concern. The attacker

could demonstrate a lower proximity than expected
based on the difference between its claimed and ac-
tual locations, which would allow it to participate in
consensus for multiple subnets. But because the key
is present in multiple subnets, this is a reasonable
outcome.

The attacker could also offer a “location spoofing”
service for users in which it signs transactions attest-
ing to a user’s presence in location A when they are
actually in location B. There are two ways to mitigate
this: network users should rely on subnet consensus
on location rather than the attestation of a single
node, and this fraud is detectable by honest nodes
due to the time of flight constraint. Thus nodes sign-
ing unphysical proximity proofs can be caught and
lose their bond.

Multiple keys, multiple locations

This is no longer a sybil attack because the attacker
is honestly representing their control of a large vol-
ume of spacetime. The network must instead rely
on Byzantine fault tolerance to ensure the attacker
cannot subvert it.

Lazy nodes
Nodes which attest to incorrect signatures or VDF
outputs may be caught by other nodes and lose their
bond.

Location collapse
The proof of proximity algorithm does not directly
place a lower bound on the distance between nodes.

A pathological solution is placing a set of Proxi-
mum nodes within a small region, asserting a larger
set of locations within a region containing insufficient
honest nodes, and adjusting time-of-flight proofs to
be consistent with the falsely asserted locations in or-
der to fraudulently claim rewards, harm the honest
nodes, or otherwise affect the network. This failure
mode was frequently observed in the Helium network
[1] and was addressed with a denylist of suspicious
nodes [13]. Proximum may be able to create stronger
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guards against this attack by combining the following
techniques:

Initial conditions

The network can be seeded with a global set of nodes
which are known to be physically distributed (e.g.
through personal setup).
Given an intially correct setup with widely dis-

tributed nodes, new adversarial nodes will be unable
to consistently deceive other nodes. Consider an ad-
versarial node n located at geospatial index In but
asserting a fraudulent geospatial index I ′n separated
by its real location by vector ∆⃗I = I ′n − In. The
adversarial node will be unable to prove its asserted
proximity to nodes located in roughly the direction
opposite ∆⃗I because the true distance will be greater
than the claimed distance.

Contiguous growth

New nodes may be permitted to join the network
only within specified distance of existing subnets and
within set rates. This prevents the creation of mostly-
fraudulent node subnets which could overwhelm the
signal from legitimate nodes.

Stability

Once the Proximum network has a large number of
globally distributed participants, asserting locations
accurately is likely to be the most profitable strategy
for any given node without particular knowledge of
other fraudulent node locations, forming a Schelling
point for all participants[22]. Note that all Proxi-
mum nodes and messages must avoid the Earth’s in-
terior. One can imagine an alternate network in space
without this restriction. In that case, the Schelling
point would likely be to misreport each node’s loca-
tion some (small but likely increasing) distance δ⃗I
toward the centroid of the network. But because
the Earth’s interior excludes this strategy, there is
no clear direction towards which all nodes could ma-
nipulate their locations without nodes on the oppo-
site side of the Earth consistently failing proximity
proofs.

Clock synchronization
In practice nodes would find it difficult to maintain
synchronized VDFs because τ varies per node based
on clock speed and architecture. Attackers can go
to extreme measures to decrease τ ′ such as using a
liquid nitrogen cooled overclocked computer in order
to exceed the VDF output rate of other nodes.

This attack can be avoided through a round-robin
approach where additional randomness is fed into the
VDF at set intervals, e.g. for each proof of proxim-
ity, upon each transaction receipt, or similar. This
prevents an attacker from performing a long-range
attack which allows them to generate V DF outputs
perceived by other nodes as “far in the future” and re-
stricts them to less harmful short-range attacks such
as misrepresenting their proximity by a factor of τ ′/τ .

10 Scalability
We can simulate network scalability with the follow-
ing assumptions:

• A message’s starting subnet is uniformly drawn
from all subnets at all used H3 resolutions.

• A message’s destination subnet is likely to be
nearby: there is linear falloff as distance from
the source subnet increases.

• Only two cells are involved in each message

Subnet resolutions will be selected based on simu-
lation results.

11 Applications
We consider several specific applications for Proxi-
mum, highlighting those which would not be feasible
in prior blockchains.

Truly local flatcoins
Local currencies have been used throughout his-
tory with varied success, even recently in the fiat
era[4][3][9][16]. Proximum enables the creation of a

11
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truly local currency which only permits transactions
within a defined spatial volume. Because the state
and consensus set for this currency need only include
subnets within this volume, the cost to transact with
this currency on Proximum should be far smaller than
an equivalent transaction on a blockchain requiring
globally-defined consensus.
Consider a set of regional currencies: despite po-

tentially disjoint consensus sets for each local cur-
rency, the Proximum consensus tree would still allow
cross-regional trade from one local currency to an-
other.
Currencies aiming to maintain stability over time

and with respect to local economic conditions are
termed flatcoins[27]. For local flatcoins implemented
on Proximum, cross-regional trade would be visible
as a net flow of value across the surface bounding the
local economic region. This balance of trade mea-
surement might be useful for inferring the relative
economic strength of a region and trustlessly adjust-
ing local currency parameters, i.e. creating an al-
gorithmic local central bank to support stable price
levels.

High-frequency trading

Past blockchain networks have not been suitable for
high frequency trading[32] because various methods
require extremely low latencies (to the point that
trading and exchange venues are often colocated to
reduce delays due to the speed of light). Proxi-
mum’s local subnets may enable high-frequency trad-
ing within specific subnets while preserving com-
pabibility with the rest of the network.

Location-gated transactions

Proximum enables the use of proximity as a new on-
chain primitive. This could be used for allow-list
transaction gating, such as check-ins for local mer-
chant loyalty programs, on-chain geocache-style puz-
zles, or deny-list gating, such as geofencing specific
regions in order to comply with local regulations.

Jurisdictional nexus
The location of an activity is often relevant to legal or
regulatory analysis and enforcement. Because Proxi-
mum provides a trust-minimized assertion of the lo-
cation of transactions and state, it may be useful to
establish that a particular activity does or does not
occur within a particular jurisdiction.

12 Interoperability
Proximum can be used by other cryptographic net-
works.

Location measurement
Networks unable to directly measure proximity of a
user u to a specific region can rely on Proximum as
follows. Let {In, Im, ...} be a set of H3 cells cover-
ing the region. Any Proximum user u can submit
any transaction with a sufficiently low delay to a cor-
responding subnet {Nn, Nm, ...} to demonstrate its
proximity to that subnet. The separate network can
then verify that transaction’s inclusion in state con-
sensus in several ways: reading an updated datum
from a node within a subnet, checking the proof sig-
natures against nodes known to occupy the subnet, or
following the transaction’s proofs Π to the root sub-
net to ensure the transaction was included in global
consensus.

Consensus adoption
An existing network may adopt Proximum’s proof-
of-spacetime consensus mechanism by following these
steps:

1. Formulating its state transition logic for compat-
ibility with Proximum

2. Reaching agreement with a set of subnets to
adopt this logic

3. Adding proximum nodes to the existing network
rules and legacy consensus mechanism

4. Disabling the legacy consensus mechanism

12
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Because only selected subnets are required to adopt

the third party network logic, and because the prior
state of the third party network can be treated as an
intrinsic for those nodes, migration to Proximum’s
consensus model should be less expensive than most
potential chain migrations.

13 Future work
There are several areas where further research might
yield useful results.

Data availability
Because each subnet is a validium to its parent, data
needed to reconstruct subnet state is not stored by
the parent. This is the parsimonious choice: consen-
sus is an O(n) problem while data storage is an O(1)
problem. But it also requires trust: one either must
store the relevant data oneself or trust another party
to store it. Proximum’s modularity allows nodes to
use third parties to perform that service, but build-
ing data availability into Proximummight increase its
utility: computation and data storage are naturally
complementary services.

Scalability
There are likely many opportunities to improve trans-
action and proof speeds by optimizing network topol-
ogy, message format, data format, and transaction
format. Because the data involved in each transac-
tion is enumerated, the potential for parallelization
within a node is high. This paper is agnostic on such
details in order to leave room for these optimizations.

Space-based locations
Because the goal for Proximum’s consensus algorithm
is maximizing decentralization and security, placing
nodes in space is a natural extension of the net-
work. This expansion might offer several advan-
tages: it could incentivize the development of com-
mercial proof-of-spacetime satellites, possibly mark-
ing the first profitable space-based mining; enhance

network resilience against terrestrial threats, includ-
ing adversarial nation-state actions; and establish a
legal foundation for provably extra-terrestrial appli-
cations. However, H3 is unsuitable for orbital dynam-
ics, necessitating an additional solar location index-
ing system. Because space-based nodes could claim
far larger regions of spacetime than terrestrial nodes
at a far lower economic value density, the compen-
sation per volume of spacetime might need to be re-
duced for these nodes.

14 Conclusion
Proximum is a computational consensus protocol in-
cluding a tree of local subnets, nodes with voting
power proportional to asserted spacetime volume, a
trust-minimized proof of proximity, and an economic
incentive structure for network participants using a
native asset ᚼ. This network enables new classes
of application which require trust-minimized location
measurement.
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Appendix
Byzantine fault tolerance
TBD

One-way hash functions
A one-way hash function takes an input message or
pre-image m and converts it to a fixed length hash
value h = H(m) where h serves as a hard-to-forge
fingerprint of m. Proximum uses the SHA3 family of
hash functions, specifically SHA-256[24].
Intuitively, hashing the message creates a unique,

hard-to-forge fingerprint of that message. Specifically
we assume a hash function with the following prop-
erties exists [23, 24]: * Pre-image resistance: Given
a hash value h it is infeasible to find a pre-image
M such that h = H(M). * Second pre-image re-
sistance: Given a pre-image M1 it is infeasible to
find a distinct message M2 that results in the same
hash value h = H(M1) = H(M2). * Collision re-
sistance: it is infeasible to find any distinct pre-
images M1 and M2 which result in the same hash
value h = H(M1) = H(M2). Note that any collision-
resistant hash function is also second pre-image re-
sistant.

Verifiable delay functions
A Verifiable Delay Function (VDF) provides 1: a
minimum bound on elapsed time from receiving a
value x to finding a value y and an optional proof π
by performing n sequential iterations of an evalua-
tion function, and 2: a simpler method to verify this
calculation.[2]

(y, π) = V n
Eval(x)

VVerify(x, y, n, π) =

{
True, if (y, π) = V n

Eval(x);

False, otherwise.

For an effective VDF, V n
Eval has time complexity

O(n), and we permit VVerify(x, y, n, π) to also have
time complexity O(n) with a sufficiently speed im-
provement (> 1000), despite the original authors’

requirement that VVerify(x, y, n, π) have a time com-
plexity of O(polylog(t)).[2] Proximum uses a sequen-
tial SHA-256 VEval and a parallel SHA-256 VVerify
based on [33] for simplicity:

(y, π) = V n
Eval(x) = Hn(x)

π0 = x

πi = Hn/m(πi−1)

πm = y

whereH2(x) is defined asH(H(x)),Hn(x) represents
the n-fold composition of H with itself, and π splits
n into m equal parts.

The verification function achieves a linear speedup
by calculating each of the proof’s m intermediate
hash values in parallel:

V n
Verify(x, y, n, π) =


True, if ∀i > 0,

πi = Hn/m(πi−1);

False, otherwise.

Elapsed time ∆t may be calculated based on the
time τ required per SHA256 hash and the number of
iterations n:

∆t = τn,

τ = 5× 10−7 seconds/hash. [25]

Proximum uses this VDF as a trustless clock and
trustless pseudo-random value generator: we assume
that all Proximum nodes begin with a synchronized
x0 at t0 and can thus agree on the ordering and timing
of events: ti = τi + t0 is the time at which yi =
V i
Eval(x0) is calculated by a Proximum node.

Digital Signatures
A keypair Kn, consisting of a public key Knpub and
a private key Knpriv , can be used to sign an arbitrary
message m using the signature algorithm S. Any
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observer can use the corresponding verification algo-
rithm R to verify that a signature s was produced by
keypair Kn for message m.

s = SKnpriv
(m),

RKnpub
(m, s) =


True, if s is a valid signature

for m by Kn;
False, otherwise.

Let M(x1, x2, . . . ) be an invertible function for se-
rializing structured data x into a message m, such
as Google’s Protocol Buffers[10]. The serialization
function M can be expressed as:

m = M(x).

For convenience, we denote a signed message that
contains both the internal message data x and a sig-
nature s of that data using keypair Kn as MSn(x):

= M(x, SKnpriv
(x)).

Any observer can inspect a signed message and ver-
ify that the signature matches the keypair and mes-
sage contents. Proximum nodes use digital signa-
tures, specifically the Ed25519 algorithm, to attest
to specific messages[7].

Zero-knowledge proofs
Proximum relies on zero-knowledge proofs to ensure
computation has been performed as specified. The
proof system has not been selected yet because the
author is relatively unfamiliar with the field and be-
cause the tradeoff between proof complexity and in-
teractivity may mean that selecting an interactive
but simpler proof system is a reasonable tradeoff
for Proximum given the requirement for low-latency
peer-to-peer communication already present in the
proof of proximity.

Spatial indexing
The H3 geospatial index tiles the Earth’s surface into
hexagonal cells at distinct resolutions, denoted as r,
as illustrated by Figure 4. These 16 hierarchical res-
olutions range from very large (r = 0: 122 cells, each
roughly 2,000 km wide) to very small (r = 15: 5.7e14
cells, each about 0.8 meters wide). H3 also defines a
mapping from an integer index Ir to a specific cell and
resolution r, providing a convenient integer represen-
tation for both location and location precision.[12, 11]

Note the bitmask used to identify the resolution
and cell index of a location I at resolution r from
Figure 4 above:

I0 = 8029fffffffffff,
I1 = 8128fffffffffff,
I2 = 822897fffffffff,
I3 = 83289afffffffff.
Proximum node n can sign a message MSn

(Ir, . . . )
to assert its location within a specific cell Ir, and
Proximum defines the subnet NIr as the set of nodes
asserting a location within cell Ir.

Speed of light
Information cannot be be transmitted faster than the
speed of light, denoted as c:

c = 299, 792, 458m/s [30].

Proximum uses the speed of light to prove prox-
imity of a keypair K based on the observation that
light travels about 150 meters during the time period
τ required to compute one iteration of VEval.

Extended Kalman Filter
(Summary of standard EKF principles)
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